
THERMAL IMAGING CAMERA WITH
RASPBERRY PI 3

by Vito Vincenzo Covella
Hardware used:

● A Raspberry Pi (Any Raspberry Pi should be fine; however since the OpenCV
code used for the project performed much slower on the Raspberry Pi Zero
W, I opted for the more powerful Raspberry Pi 3 B+).

● An MLX90640 32x24 pixel thermal camera (I bought it from here
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout​);
sensors with higher resolution are too expensive for my budget, on the other
end the cheapest solution available in the market is a 8x8 sensor, which is a
very low resolution. The MLX90640 was a good middleground.

● A picamera (I used the Kuman 5MP SC15, bought from here.
https://www.amazon.it/Raspberry-Fotocamera-Notturna-Infrarossi-Supports/d
p/B01ICNT3HC​, we are not gonna need the two infrared LEDs).

● Some tactile buttons, used to take screenshots and switch on and off the
device.

● An SPI LCD screen with ILI9341
(​https://www.amazon.it/gp/product/B0749NHRV4​)

● Two 3.7V rechargeable batteries, for example two samsung INR 18650 25r
3,7v 20a 2500mah batteries
(​https://www.ebay.it/itm/2x-Samsung-Li-Ionen-INR-18650-25R-3-7V-20A-250
0mAh-Lithium-Akku-Akkubox​)

● A bms protection and charging board
(​https://www.ebay.it/itm/2S-5A-8-4V-Li-ion-Lithium-18650-Battery-BMS-Packs
-PCB-Protection-Board​)

● a mini360 buck converter to allow us to step down from 8.4V to 5V
(​https://www.ebay.it/itm/360-DC-DC-Regolabile-Modulo-Converter-Alimentator
e-3V-5V-16V-Power-MP2307-Chip/173967505621​)

● A 9V 3A power supply (like this one
https://www.amazon.it/gp/product/B01GRYFI6S/​)

● A power plug
● A toggle switch
● A 3D printer in order to print the case of the device.
● Various jumper cables

Preliminary operations
Before actually diving into the details of the project, I suggest you to prepare your sd
card and operating system. First of all I used Raspbian Stretch instead of Buster,

https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout
https://www.amazon.it/Raspberry-Fotocamera-Notturna-Infrarossi-Supports/dp/B01ICNT3HC
https://www.amazon.it/Raspberry-Fotocamera-Notturna-Infrarossi-Supports/dp/B01ICNT3HC
https://www.amazon.it/gp/product/B0749NHRV4
https://www.ebay.it/itm/2x-Samsung-Li-Ionen-INR-18650-25R-3-7V-20A-2500mAh-Lithium-Akku-Akkubox
https://www.ebay.it/itm/2x-Samsung-Li-Ionen-INR-18650-25R-3-7V-20A-2500mAh-Lithium-Akku-Akkubox
https://www.ebay.it/itm/2S-5A-8-4V-Li-ion-Lithium-18650-Battery-BMS-Packs-PCB-Protection-Board
https://www.ebay.it/itm/2S-5A-8-4V-Li-ion-Lithium-18650-Battery-BMS-Packs-PCB-Protection-Board
https://www.ebay.it/itm/360-DC-DC-Regolabile-Modulo-Converter-Alimentatore-3V-5V-16V-Power-MP2307-Chip/173967505621
https://www.ebay.it/itm/360-DC-DC-Regolabile-Modulo-Converter-Alimentatore-3V-5V-16V-Power-MP2307-Chip/173967505621
https://www.amazon.it/gp/product/B01GRYFI6S/

because the driver used to make the SPI LCD work properly doesn’t seem to be
compatible with Buster. Moreover, since I went for the headless installation process
and used the Lite version, I installed the desktop manager through ​sudo apt-get
install raspberrypi-ui-mods ​ and other tools I would need throughout the
making of the project, such as vim, git, python3’s pip3. Moreover the picamera must
be enabled from the menu accessible by typing ​sudo raspi-config ​. If you are
going with the headless approach, I advise you to enable the VNC server: you’re
gonna need it to test some things with the capabilities offered by the desktop
manager. Finally you must modify /etc/fstab in order to mount /tmp on RAM, because
the code we’re gonna use continuously writes thermal data on /tmp/heatmap.csv to
make it accessible by other programs. Once you’ve done it, your /etc/fstab should
look similar to this

Installing the MLX90640 and making it work
Grab the code from ​https://github.com/pimoroni/mlx90640-library​ by typing ​git
clone​ ​https://github.com/pimoroni/mlx90640-library.git​ ​ then compile it
following the instruction on the page keeping in mind we’re gonna use the I2C mode.
Install all the libraries needed for the code, as mentioned on the github page.
For some reasons if you execute make ​make I2C_MODE=LINUX​ you could get some
error about the BCM2835 Library; you can avoid it by executing

make bcm2835

make clean

make I2C_MODE=LINUX

What we really need at the end of the process is the libMLX90640_API.a, which will
be linked with the driver that creates the heatmap.csv (more on that later).
Now you can connect the MLX90640 to the Raspberry I2C pin and power pins. I
used the following wiring scheme (where the number of the pin is the actual physical
pin numbering system, not the GPIO/BCM system)

3V pin 1

SDA pin 3

SCL pin 5

GND pin 9

https://github.com/pimoroni/mlx90640-library
https://github.com/pimoroni/mlx90640-library.git

Now, to test that everything works fine, if you type from mlx90640-library directory
examples/sdlscale​ you should see the sensor working in an SDL window.

As mentioned before, what we really need from the compilation process is the
libMLX90640_API.a. This file must be linked with the mlx90640_driver obtained by
compiling the .cpp retrievable from
https://github.com/leswright1977/mlx90640_python​. leswright1977’s idea was to
overlap the output of the picamera with the thermal image, in order to see
temperature data and the borders of the objects in the image.

The instruction to do what we have described are these:

git ​clone​ https://github.com/leswright1977/mlx90640_python.git
cp mlx90640_python/mlx90640_driver.cpp

mlx90640-library/mlx90640_driver.cpp

cp mlx90640_python/thermalcam.py mlx90640-library/thermal.py

cd​ mlx90640-library
g++ -c mlx90640_driver.cpp -o mlx90640_driver.o

g++ mlx90640_driver.o libMLX90640_API.a -o mlx90640_driver

If you want to detect temperatures higher than 99.99 °C, comment line 115 of
mlx90640_driver.cpp before compiling it.

The thermal.py code must be modified in order to make it work fullscreen and stretch
the image to occupy all the 320x240 pixels that will be available on the screen.
The final file should look like this:
import​ cv2
import​ time
import​ numpy
import​ random
import​ math
import​ traceback
import​ io

#a hack to wake our bus if it hangs....

import​ subprocess
p = subprocess.run([​'i2cdetect'​, ​'-y'​,​'1'​, ​'0x33'​, ​'0x33'​])
#######################################

from​ picamera.array ​import​ PiRGBArray

https://github.com/leswright1977/mlx90640_python

from​ picamera ​import​ PiCamera
from​ picamera.exc ​import​ PiCameraRuntimeError
from​ picamera.exc ​import​ PiCameraValueError
import​ numpy ​as​ np
import​ sys

sys.stdout = ​open​(​"/home/pi/thermaloutput.log"​, ​"w"​)
sys.stderr = ​open​(​"/home/pi/thermalerr.log"​, ​"w"​)

time.sleep(​7​)
camera = PiCamera()

camera.resolution = (​288​, ​368​) ​#start with a slightly larger image so
we can crop and align later!

camera.framerate = ​20
#PiCamera.CAPTURE_TIMEOUT = 60

rawCapture = PiRGBArray(camera, ​size​=(​288​, ​368​))

allow the camera to warmup

time.sleep(​0.1​)

nmin = ​0
nmax = ​255
alpha1 = ​0.5
alpha2 = ​0.5

prevData = []

temp = ​0
for​ frame ​in​ camera.capture_continuous(rawCapture, ​format​=​"rgb"​,
use_video_port​=​True​):
 ​# Capture frame-by-frame
 frame = frame.array

 ​#frame = cv2.flip(frame, 0) #flip if neccesary
 ​#frame = cv2.flip(frame, 1)

 ​#crop and align visible image...
 ​#crop image y start yend, xstart xend; original value
[5:325,10:250]

 frame = frame[​5​:​325​, ​10​:​250​]

 heatmap = np.zeros((​32​,​24​,​3​), np.int32) ​#create the blank image to
work from

 data = np.fromfile(​'/tmp/heatmap.csv'​, ​dtype​=​float​, ​count​=-​1​,
sep​=​','​) ​#get the data
 ​if​ np.array_equal(data,prevData):
 ​print​(​'Data stall...Probing i2c'​)
 p = subprocess.run([​'i2cdetect'​, ​'-y'​,​'1'​, ​'0x33'​, ​'0x33'​])

 prevData = data

 index = ​0
 ​#add to the image
 ​if​ ​len​(data) == ​768​:
 ​for​ y ​in​ ​range​ (​0​,​32​):
 ​for​ x ​in​ ​range​ (​0​,​24​):
 val = (data[index]*​10​)-​100
 ​if​ math.isnan(val):
 val = ​0
 ​if​ val > ​255​:
 val=​255
 ​#print(index)
 ​#print(data)

 heatmap[y,x] = (val,val,val)

 ​if​(y == ​16​) ​and​ (x == ​12​):
 temp = data[index]

 index+=​1
 heatmap = cv2.flip(heatmap, -​1​) ​#flip heatmap to match image
 prev_heatmap = heatmap ​#save the heatmap in case we get a data
miss

 ​else​:
 ​print​(​"Data miss...Loading previous thermal image"​)
 ​try​:
 heatmap = prev_heatmap

 ​except​:
 ​print​(​"Previous heatmap does not exist!"​)

 heatmap = cv2.normalize(heatmap,​None​,nmin,nmax,cv2.NORM_MINMAX,
cv2.CV_8U)

 heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

 heatmap =

cv2.resize(heatmap,(​240​,​320​),​interpolation​=cv2.INTER_CUBIC)
 heatmap = cv2.flip(heatmap, ​0​)

 ​# Display the resulting frame
 window_name = ​'Thermal'
 cv2.namedWindow(window_name,cv2.WND_PROP_FULLSCREEN)

 cv2.moveWindow(window_name, ​0​, ​0​)
 cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,

cv2.WINDOW_FULLSCREEN)

 ​#Sharpen the image up so we can see edges under the heatmap
 kernel = np.array([[-​1​,-​1​,-​1​], [-​1​,​9​,-​1​], [-​1​,-​1​,-​1​]])
 frame = cv2.filter2D(frame, -​1​, kernel)

 frame = cv2.addWeighted(frame,alpha1,heatmap,alpha2,​0​) ​#combine the
images

 cv2.line(frame,(​120​,​150​),(​120​,​170​),(​0​,​0​,​0​),​1​) ​#vline
 cv2.line(frame,(​110​,​160​),(​130​,​160​),(​0​,​0​,​0​),​1​) ​#hline

 cv2.putText(frame,​'Temp: '​+​str​(temp), (​10​, ​15​),\
 cv2.FONT_HERSHEY_SIMPLEX, ​0.6​,(​0​, ​255​, ​255​), ​1​, cv2.LINE_AA)
M = cv2.getRotationMatrix2D((160,120), 90, 1)

rotated90 = cv2.warpAffine(frame, M, (240, 320))

cv2.imshow('Thermal', rotated90)

 ​#custom added
 frame = cv2.resize(frame, (​420​, ​320​), ​interpolation​=cv2.INTER_CUBIC)
 cv2.imshow(​'Thermal'​,frame)

 res = cv2.waitKey(​1​)
 ​#print(res)

 ​if​ res == ​113​: ​#q
 ​break

 ​if​ res == ​97​: ​#a
 nmin += ​10
 ​print​(nmin)
 ​if​ res == ​122​: ​#z
 nmin -= ​10
 ​print​(nmin)
 ​if​ res == ​115​: ​#s
 nmax += ​10
 ​print​(nmax)
 ​if​ res == ​120​: ​#x
 nmax -= ​10
 ​print​(nmax)
 ​if​ res == ​100​: ​#d
 alpha1 += ​0.1
 alpha2 -= ​0.1
 ​if​ res == ​99​: ​#c
 alpha1 -= ​0.1
 alpha2 += ​0.1

 ​# clear the stream in preparation for the next frame
 rawCapture.truncate(​0​)

print​(​"Exiting application"​)
cv2.destroyAllWindows()

Feel free to hack the code inside the two for loops, used to get the heatmap value
from the array “data”, in order to adjust it to your purposes. Right now, if for example
there’s a flame on the scene, the code emphasizes in red all the temperatures above
a certain threshold (35.5 °C), which is useful if you want to see in red the hot air
around the flame. If instead you visually want less sensibility to temperatures higher
than 35.5 °C and more precision (for the example above, the flame in red and
everything else in blue, light blue or yellow), use ​val = data[index]​ and remove
the check ​if​ val > ​255​: val = ​255​. Whatever you decide to do, if you leave the
rest unchanged, the text visualized in the upper part of the screen will always show
the correct temperature detected at the center of the image, where the cross is
located.

The key modifications applied to the original code are the added lines to make it
fullscreen, the lines to resize the output image and the instructions to flip the
heatmap image, more specifically
window_name = ​'Thermal'
cv2.namedWindow(window_name,cv2.WND_PROP_FULLSCREEN)

cv2.moveWindow(window_name, ​0​, ​0​)
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,

cv2.WINDOW_FULLSCREEN)
frame = cv2.resize(frame, (​420​, ​320​), interpolation=cv2.INTER_CUBIC)
and
heatmap = cv2.flip(heatmap, 0)

There are also some instruction to redirect stdout and stderr to specific files for
debugging purposes, feel free to remove them if you don’t need them.
Moreover there’s a 7 seconds delay to warmup the picamera and reduce the
frequency of crashes during the firsts seconds (more on the paragraphs “Thermal
cam monitor” and “Conclusions and further developments”).
Finally to correctly detect temperatures below 0 °C there are other modifications to
be done: the heatmap variable must contain data of type np.int32 instead of np.uint8
(​heatmap = np.zeros((​32​,​24​,​3​), np.int32)​) and the normalize function must
return data of type cv2.CV_8U to make cv2.applyColorMap work correctly (​heatmap
= cv2.normalize(heatmap,​None​,nmin,nmax,cv2.NORM_MINMAX, cv2.CV_8U)​).

To make the python file work, you should install opencv-python and other libraries,
with the following command: ​pip3 install opencv-python; sudo apt-get
install -y libcblas-dev libhdf5-dev libhdf5-serial-dev

libatlas-base-dev libjasper-dev libqtgui4 libqt4-test​.
Now in one terminal tab (on a VNC client or with hdmi screen, keyboard and mouse)
execute mlx90640_driver by typing ​./mlx90640_driver​ and on the other tab give
the command ​python3 thermal.py​. If you’ve done everything right, you should see
a fullscreen video with thermal images. Remember to put the two cameras (the
picamera and the sensor) as close to each other as possible.

Installing the SPI LCD screen
If you’ve got the same screen listed in the hardware section, this is the wiring for it
(again, the pin number is the physical one, not the BCM numbering system):
MISO -> 21
LED -> 11
SCK -> 23
MOSI -> 19
DC -> 15
RESET -> 13

CS -> 24
GND -> GND
VCC -> 5V
We are not gonna use the touchscreen and SD cart slot of the screen. The driver we
will use mirrors what gets sent to the hdmi port. For this reason, we have to tweak
the /boot/config.txt by adding the following lines and then reboot the system:

display_rotate=1

hdmi_group=2

hdmi_mode=87

hdmi_cvt=240 320 60 1 0 0 0

hdmi_force_hotplug=1

After rebooting, you must download the SPI driver here
https://github.com/juj/fbcp-ili9341​ by cloning the repository with ​git ​clone
https://github.com/juj/fbcp-ili9341.git​, then follow the instruction to
compile it by using the proper parameters for you LCD screen. If you have the same
LCD I bought, give the following commands:

sudo apt-get install cmake

cd​ fbcp-ili9341
mkdir build

cd​ build
cmake -DILI9341=ON -DGPIO_TFT_DATA_CONTROL=22

-DGPIO_TFT_RESET_PIN=27 -DGPIO_TFT_BACKLIGHT=17

-DSPI_BUS_CLOCK_DIVISOR=6 -DARMV8A=ON -DBACKLIGHT_CONTROL=ON

-DSTATISTICS=0 ..

make -j

To execute the driver (which must be up and running all the time for the LCD screen
to work properly), give ​sudo ./fbcp-ili9341​ on the terminal. I will tell you how to
autostart the driver in the appropriate section.

Taking screenshot with a tactile button
I wanted to allow the user of the device to take screenshots of the thermal image
when pressing a button and saving the screenshot in ~/shots. In order to do this I

https://github.com/juj/fbcp-ili9341

decided to use a tactile button, which looks like this: . The schematics for
this button are the following ones:

This means that to make it work properly all we need is to connect one pin to a GPIO
pin of the Raspberry Pi (I chose pin 32, a.k.a. GPIO12) and the other to GND. We
can leave untouched the other two pins of the button.
Then you must write the code to take the screenshots, but before doing that, make
sure to have scrot installed on your system by typing ​sudo apt-get install
scrot​. Also install RPi.GPIO with ​pip3 install --user RPi.GPIO​. Finally, create
the shots directory in your home folder with

cd​ ~
mkdir shots

and the python file that will have the code with

cd​ ~
mkdir piscreenshot

cd​ piscreenshot
vim pyscreenshot.py

The code used to take screenshots must be able to handle the debouncing problem.
Moreover in order not to “peg” the CPU, we are going to check for an interrupt
instead of relying on polling. The final code looks like this:

import​ RPi.GPIO ​as​ GPIO
import​ threading

import​ os
import​ time

GPIO.setmode(GPIO.BCM)

GPIO.setup(​12​, GPIO.IN, ​pull_up_down​=GPIO.PUD_UP)

while​ ​True​:
 time_stamp = time.time()

 GPIO.wait_for_edge(​12​, GPIO.RISING)
 time_now = time.time()

 ​if​ (time_now - time_stamp) >= ​0.3​:
 os.system(​"scrot '%Y-%m-​%d​-​%s​_wxh.png' -e 'mv $f ~/shots/'"​)
 ​#print("button pressed")

You can test the code by typing ​python3 pyscreenshot.py​ and then pressing the
button to take the screenshots. This is another application that must autostart at the
booting of the device, we will see how to do that in another section of this document.

Thermal cam monitor
Since the instruction ​camera.capture_continuous(rawCapture, format=​"rgb"​,
use_video_port=​True​)​ sometimes makes the application crash during the first
seconds (I’ve checked the error log and tried to fix it, without success; however
putting a 7 seconds delay makes the crashes occur less frequently), we are going to
code a monitor to make it restart in case of accidental crashes. This monitor
launches the application thermal.py and waits until it terminates; when this happens,
it restarts thermal.py.

from​ subprocess ​import​ Popen
import​ sys

sys.stdout = ​open​(​"/home/pi/thermalwatchout.log"​, ​"w"​)
sys.stderr = ​open​(​"/home/pi/thermalwatcherr.log"​, ​"w"​)

while​ ​True​:
 p = Popen(​"/usr/bin/python3 "​ +
"/home/pi/mlx90640-library/thermal.py"​, ​shell​=​True​)
 p.wait()

Let’s save this file as thermalwatcher.py.

Shutdown button
I wanted the raspberry pi to shutdown properly. For this reason I coded another
python script that listens to a button press in order to power off the device. This time
I wanted the button to be held down for 3 seconds before powering off the device, in
order to prevent accidental shutdowns. This is the python script I used, inspired by
https://github.com/TonyLHansen/raspberry-pi-safe-off-switch​:
#!/usr/bin/env python3

from​ gpiozero ​import​ Button
from​ signal ​import​ pause
import​ os, sys

offGPIO = ​16
holdTime = ​3

the function called to shut down the RPI

def​ ​shutdown​():
 os.system(​"sudo shutdown -h now"​)

btn = Button(offGPIO, ​hold_time​=holdTime)
btn.when_held = shutdown

pause() ​# handle the button presses in the background

I saved this file as pyshutdown.py inside /home/pi/pishutdown folder.

Autostarting applications
I won’t use the touchscreen, so in order for the device to operate properly, I decided
to make some application autostart at boot time. There are two different applications:
the ones that don’t need LXDE up and running and the ones that do need the
functionality of the desktop manager. For this reason some application will be
autostarted by modding rc.local, others by modding
/etc/xdg/lxsession/LXDE-pi/autostart (or ~/.config/lxsession/LXDE-pi/autostart if you
have this file on your system).
Let’s start by installing unclutter with ​sudo apt-get install unclutter​, since we
need it to make the mouse cursor disappear after booting up. Then disable the
screensaver from the screensaver configuration of the kiosk desktop manager.
After that, open /etc/rc.local with ​sudo vim /etc/rc.local​ and add the following
lines before the line ​exit​ 0​:

sudo /home/pi/fbcp-ili9341/build/fbcp-ili9341 &

/home/pi/mlx90640-library/mlx90640_driver &

https://github.com/TonyLHansen/raspberry-pi-safe-off-switch

/usr/bin/python3 /home/pi/pishutdown/pyshutdown.py &

These lines are needed in order to autostart the driver of the LCD screen, the
MLX90640 logger that continuously writes on /tmp/heatmap.csv and the script that
handles the shutdown button.

Finally add the following line to your /etc/xdg/lxsession/LXDE-pi/autostart (or
~/.config/lxsession/LXDE-pi/autostart if you have this file on your system):

@xset -dpms

@xset s off

@unclutter -idle 0

@/usr/bin/python3 /home/pi/mlx90640-library/thermalwatcher.py

@/usr/bin/python3 /home/pi/piscreenshot/pyscreenshot.py

These lines will make sure to autostart the python application that will visualize the
thermal video feed and the python application that will take screenshots when the
tactile button will be pressed.

Charging circuit and power supply
In order to make the device portable I decided to use two 3.7V (4.2V when fully
charged) batteries. These batteries must be properly connected to a BMS (Battery
Management System) in order to recharge them properly. More specifically, I used a
HX-2S-01, shown on the figure below. P+ and P- will be connected to a power plug.

Finally I needed to step down from 8.4V to 5V, which is the right voltage to power up
the Raspberry Pi 3. For this reason I used a mini360 buck converter based on the
chip MP2307, like the one shown on the figure below. Keep in mind that the
converter must be regulated before using it, you can do it with a screwdriver and a
multimeter placed on the output to measure voltage.

P+ of the BMS gets connected to the positive input of the DC-DC buck converter,
while P- will be connected to an on-off toggle switch. One of the output of the toggle
switch is connected to the negative input of the buck converter in order to close the
circuit when the toggle is on. Finally the positive output of the buck converter is
connected to a 5V pin of the Raspberry Pi 3, while the negative output is connected
to a GND pin.
The full schematics, created using the software Fritzing, are shown below.

Below there are some images that show the construction process.

Push buttons circuit
In order to have a support structure for the push buttons when inserting the device in
the 3D printed case, I put the two tactile push buttons previously described
(shutdown button and screenshot button) on a veroboard and connected them on a 3
pin male header. The figures below show the result and the trails used to connect
the buttons to the pins: the middle pin is the shared ground, while the pins to the left
and to the right will be connected to two different GPIOs pins of the Raspberry Pi.

3D printed case
The case has been modeled using Autodesk Fusion360 (it can be used freely for
non commercial use) and it is available here: ​https://a360.co/2KxB6Wr​. In case you
can’t use Fusion360, the STLs of the components are available in zipped format
here:
https://drive.google.com/file/d/169e0E9VViFzuFO-B8-8mtHYRwapbZudJ/view?usp=
sharing​.
Each component of the case has been exported in STL format, then feeded into
PrusaSlicer (​https://github.com/prusa3d/PrusaSlicer​), in order to generate the
G-Code for the 3D printer, and finally printed.
Below there are some rendering of the case and an image that shows how the
component will be organized inside it.

https://a360.co/2KxB6Wr
https://drive.google.com/file/d/169e0E9VViFzuFO-B8-8mtHYRwapbZudJ/view?usp=sharing
https://drive.google.com/file/d/169e0E9VViFzuFO-B8-8mtHYRwapbZudJ/view?usp=sharing
https://github.com/prusa3d/PrusaSlicer

The final result
Here’s what the device looks like after assembling and making it work.

Below there are some examples of screenshots taken from the device, more
specifically they show the most heated parts of my laptop and my hand.

Conclusions and further developments
Even though the device works fine at the end of the development and assembly
process, a few things could be improved. First of all, there’s a 7 seconds delay
between booting up the desktop environment and launching the application
responsible for visualizing the thermal images. This delay is needed in order to make
the picamera ready and avoid initial crashes of the application. Maybe one could
devise a solution to this problem while also avoiding initial crashes. Right now during

the firsts second random crashes could still occur, but, thanks to the delay, they are
less frequent and anyway the monitor coded will readily restart the application.
Another thing that could be improved is the addition of a visual feedback when
making screenshots. Right now, when the appropriate button is pressed, a
screenshot is taken, but there’s no feedback of the process.
Finally more buttons could be added in order to handle the nmin and nmax
parameters of the thermal.py script, for example allowing the user to lower nmin and
reduce background thermal noise.

License
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
See ​https://creativecommons.org/licenses/by-sa/4.0/​ for details.

https://creativecommons.org/licenses/by-sa/4.0/

